

CBSE: Class: XII Computer Science

UNIT-1 CHAPTER-1: Basic Python Programming (Revision of Class XI)

What is Python

Python is a general purpose, dynamic, high-level, and interpreted programming language. It supports Object

Oriented programming approach to develop applications. It is simple and easy to learn and provides lots of high-

level data structures.

Python is easy to learn yet powerful and versatile scripting language, which makes it attractive for Application

Development.

Python's syntax and dynamic typing with its interpreted nature make it an ideal language for scripting and rapid

application development.

Python supports multiple programming pattern, including object-oriented, imperative, and functional or procedural

programming styles.

Python is not intended to work in a particular area, such as web programming. That is why it is known

as multipurpose programming language because it can be used with web, enterprise, 3D CAD, etc.

We don't need to use data types to declare variable because it is dynamically typed so we can write a=10 to assign

an integer value in an integer variable.

Python makes the development and debugging fast because there is no compilation step included in Python

development, and edit-test-debug cycle is very fast.

Difference between Python 2 vs. Python 3

In most of the programming languages, whenever a new version releases, it supports the features and syntax of the

existing version of the language, therefore, it is easier for the projects to switch in the newer version. However, in

the case of Python, the two versions Python 2 and Python 3 are very much different from each other.

A list of differences between Python 2 and Python 3 are given below:

1. Python 2 uses print as a statement and used as print "something" to print some string on the console. On

the other hand, Python 3 uses print as a function and used as print("something") to print something on the

console.

2. Python 2 uses the function raw_input() to accept the user's input. It returns the string representing the

value, which is typed by the user. To convert it into the integer, we need to use the int() function in Python.

On the other hand, Python 3 uses input() function which automatically interpreted the type of input entered

by the user. However, we can cast this value to any type by using primitive functions (int(), str(), etc.).

3. In Python 2, the implicit string type is ASCII, whereas, in Python 3, the implicit string type is Unicode.

4. Python 3 doesn't contain the xrange() function of Python 2. The xrange() is the variant of range() function

which returns a xrange object that works similar to Java iterator. The range() returns a list for example the

function range(0,3) contains 0, 1, 2.

https://www.javatpoint.com/classification-of-programming-languages

5. There is also a small change made in Exception handling in Python 3. It defines a keyword as which is

necessary to be used.

Features of Python

Python provides lots of features that are listed below.

1) Easy to Learn and Use: Python is easy to learn and use. It is developer-friendly and high level programming language.

2) Expressive Language: Python language is more expressive means that it is more understandable and readable.

3) Interpreted Language: Python is an interpreted language i.e. interpreter executes the code line by line at a time. This makes debugging easy and thus suitable for

beginners.

4) Cross-platform Language: Python can run equally on different platforms such as Windows, Linux, Unix and Macintosh etc. So, we can say that Python is a

portable language.

5) Free and Open Source: Python language is freely available at offical web address.The source-code is also available. Therefore it is open source.

6) Object-Oriented Language :Python supports object oriented language and concepts of classes and objects come into existence.

7) Extensible: It implies that other languages such as C/C++ can be used to compile the code and thus it can be used further in our python code.

8) Large Standard Library :Python has a large and broad library and prvides rich set of module and functions for rapid application development.

9) GUI Programming Support : Graphical user interfaces can be developed using Python.

10) Integrated: It can be easily integrated with languages like C, C++, JAVA etc.

Python History and Versions

o Python laid its foundation in the late 1980s.

o The implementation of Python was started in the December 1989 by Guido Van Rossum at CWI in

Netherland.

o In February 1991, van Rossum published the code (labeled version 0.9.0) to alt.sources.

o In 1994, Python 1.0 was released with new features like: lambda, map, filter, and reduce.

o Python 2.0 added new features like: list comprehensions, garbage collection system.

o On December 3, 2008, Python 3.0 (also called "Py3K") was released. It was designed to rectify

fundamental flaw of the language.

o ABC programming language is said to be the predecessor of Python language which was capable of

Exception Handling and interfacing with Amoeba Operating System.

o Python is influenced by following programming languages:

o ABC language.

o Modula-3

Python Version List

Python programming language is being updated regularly with new features and supports. There are lots of

updations in python versions, started from 1994 to current release.

A list of python versions with its released date is given below.

Python Version Released Date

Python 1.6 September 5, 2000

Python 2.7 July 3, 2010

Python 3.6 December 23, 2016

Python 3.7.6 December 23, 2018

Python 3.8.1 December 18, 2018

Python 3.8.2 February 24, 2020

Python 3.7.7 March 10, 2020

Python Execution Mode

• Interactive Mode: Interactive mode, as the name suggests, allows us to interact with OS.

• Script Mode: In script mode, we type Python program in a file and then use interpreter to execute the content of

the file.

Python Fundamentals

• Indentation: Blocks of code are denoted by line indentation, which is rigidly enforced.

• Comments: A hash sign (#) that is not inside a string literal begins a single line comment. We can use triple

quoted string for giving multiple-line comments.

• Variables: A variable in Python is defined through assignment. There is no concept of declaring a variable

outside of that assignment. Value of variable can be manipulated during program run.

• Dynamic Typing: In Python, while the value that a variable points to has a type, the variable itself has no strict

type in its definition. Data type of the variable is decided at the time of value assignment. If value is a number the

variable would be interger/float and if the value is string then variable would be string.

For example :

num=44 # here num would be consider as integer variable

num=”We are human” # here num would be consider as string variable

• Static Typing: In Static typing, a data type is attached with a variable when it is defined first and it is fixed.

• Multiple Assignment: Python allows you to assign a single value to several variables simultaneously.

 For example: a = b = c = 1

 a, b, c = 1, 2, “john”

• Token : The smallest individual unit in a program is known as a Token or a lexical unit.

• Identifiers : An identifier is a name used to identify a variable, function, class, module, or other object. An

identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, underscores,

and digits (0 to 9).

• Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a case sensitive

programming language. Thus, Value and value are two different identifiers in Python.

https://www.python.org/downloads/release/python-382/
https://www.python.org/downloads/release/python-377/

Here are following identifiers naming convention for Python:

 Class names start with an uppercase letter and all other identifiers with a lowercase letter.

 Starting an identifier with a single leading underscore indicates by convention that the identifier is meant to

be private.

 Starting an identifier with two leading underscores indicates a strongly private identifier.

 If the identifier also ends with two trailing underscores, the identifier is a language-defined special name.

• Reserved Words(Keywords) : The following list shows the reserved words in Python

Python Keyword List

Keywords in Python

False
await else import pass

None
break except in raise

True
class finally is return

and
continue for lambda try

as
def from nonlocal while

assert
del global not with

async
elif if or yield

The above keywords may get altered in different versions of Python. Some extra might get added or some might be

removed.

You can always get the list of keywords in your current version by typing the following in the prompt.

>>> import keyword

>>> print(keyword.kwlist)

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for',

'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

These reserved words may not be used as constant or variable or any other identifier names. All the Python

keywords contain lowercase letters only.

• Literal/ Values: Literals (Often referred to as constant value) are data items that have a fixed value. Python

allows several kind of literals. String literals, Numeric literals, Boolean literals, special literal None, literal

Collections

• Data Types: Data type is a set of values and the allowable operations on those values. Python has a great set of

useful data types. Python’s data types are built in the core of the language. They are easy to use and straight

forward.

https://www.programiz.com/python-programming/keyword-list#true_false
https://www.programiz.com/python-programming/keyword-list#async_await
https://www.programiz.com/python-programming/keyword-list#if_else_elif
https://www.programiz.com/python-programming/keyword-list#from_import
https://www.programiz.com/python-programming/keyword-list#pass
https://www.programiz.com/python-programming/keyword-list#none
https://www.programiz.com/python-programming/keyword-list#break_continue
https://www.programiz.com/python-programming/keyword-list#except_raise_try
https://www.programiz.com/python-programming/keyword-list#in
https://www.programiz.com/python-programming/keyword-list#except_raise_try
https://www.programiz.com/python-programming/keyword-list#true_false
https://www.programiz.com/python-programming/keyword-list#class
https://www.programiz.com/python-programming/keyword-list#finally
https://www.programiz.com/python-programming/keyword-list#is
https://www.programiz.com/python-programming/keyword-list#return
https://www.programiz.com/python-programming/keyword-list#and_or_not
https://www.programiz.com/python-programming/keyword-list#break_continue
https://www.programiz.com/python-programming/keyword-list#for
https://www.programiz.com/python-programming/keyword-list#lambda
https://www.programiz.com/python-programming/keyword-list#except_raise_try
https://www.programiz.com/python-programming/keyword-list#as
https://www.programiz.com/python-programming/keyword-list#def
https://www.programiz.com/python-programming/keyword-list#from_import
https://www.programiz.com/python-programming/keyword-list#nonlocal
https://www.programiz.com/python-programming/keyword-list#while
https://www.programiz.com/python-programming/keyword-list#assert
https://www.programiz.com/python-programming/keyword-list#del
https://www.programiz.com/python-programming/keyword-list#global
https://www.programiz.com/python-programming/keyword-list#and_or_not
https://www.programiz.com/python-programming/keyword-list#with
https://www.programiz.com/python-programming/keyword-list#asyn_await
https://www.programiz.com/python-programming/keyword-list#if_else_elif
https://www.programiz.com/python-programming/keyword-list#if_else_elif
https://www.programiz.com/python-programming/keyword-list#and_or_not
https://www.programiz.com/python-programming/keyword-list#yield

• Numbers can be either integers or floating point numbers.

• A sequence is an ordered collection of items, indexed by integers starting from 0. Sequences can be grouped

into strings, tuples and lists.

• Strings are lines of text that can contain any character. They can be declared with single or double quotes.

• Lists are used to group other data. They are similar to arrays.

• Tuple consists of a number of values separated by commas.

• A set is an unordered collection with no duplicate items.

• A dictionary is an unordered set of key value pairs where the keys are unique.

• An Expression in python is a valid combination of operators, literals and variables.

• Operator : Operators are special symbols which perform some computation. Operators and operands form an

expression and when combined together then give result. Python operators can be classified as given below :

Python Loops:

The flow of the programs written in any programming language is sequential by default. Sometimes we may need

to alter the flow of the program. The execution of a specific code may need to be repeated several numbers of times.

For this purpose, The programming languages provide various types of loops which are capable of repeating some

specific code several numbers of times. Consider the following diagram to understand the working of a loop

statement.

Why we use loops in python?

DATA T YPES

NUMBERS SEQUENCES SETS MAPS

in long floa comple x string lis tuple dictionar y

 Python operator types

Operators

Arithmeti c
operators

Relational
operators

Logical
operators

Assignment
operator s

Bitwise
operators

Membership
operator s

+
–

/
%
**
/

/

*

<
>
<=
>=

<> or !=
==

or
and
not

=
+=
– =
*=
/=
%=
/

/

=
**=

&
|
^
-
<<
>>

in
no t i n

•

The looping simplifies the complex problems into the easy ones. It enables us to alter the flow of the program so

that instead of writing the same code again and again, we can repeat the same code for a finite number of times. For

example, if we need to print the first 10 natural numbers then, instead of using the print statement 10 times, we can

print inside a loop which runs up to 10 iterations.

Advantages of loops

There are the following advantages of loops in Python.

1. It provides code re-usability.

2. Using loops, we do not need to write the same code again and again.

3. Using loops, we can traverse over the elements of data structures (array or linked lists).

There are the following loop statements in Python.

Loop Statement Description

for loop The for loop is used in the case where we need to execute some part of the code

until the given condition is satisfied. The for loop is also called as a per-tested

loop. It is better to use for loop if the number of iteration is known in advance.

while loop The while loop is to be used in the scenario where we don't know the number

of iterations in advance. The block of statements is executed in the while loop

until the condition specified in the while loop is satisfied. It is also called a pre-

tested loop.

do-while loop The do-while loop continues until a given condition satisfies. It is also called

post tested loop. It is used when it is necessary to execute the loop at least once

(mostly menu driven programs).

Example of Loops

The for loop in Python is used to iterate the statements or a part of the program several times. It is frequently used

to traverse the data structures like list, tuple, or dictionary.

The syntax of for loop in python is given below.

1. for iterating_var in sequence:

2. statement(s)

Example

1. i=1

2. n=int(input("Enter the number up to which you want to print the natural numbers?"))

3. for i in range(0,10):

4. print(i,end = ' ')

Output:

0 1 2 3 4 5 6 7 8 9

Python for loop example : printing the table of the given number

1. i=1;

2. num = int(input("Enter a number:"));

3. for i in range(1,11):

4. print("%d X %d = %d"%(num,i,num*i));

Output:

Enter a number:10

10 X 1 = 10

10 X 2 = 20

10 X 3 = 30

10 X 4 = 40

10 X 5 = 50

10 X 6 = 60

10 X 7 = 70

10 X 8 = 80

10 X 9 = 90

10 X 10 = 100

Nested for loop in python

Python allows us to nest any number of for loops inside a for loop. The inner loop is executed n number of times

for every iteration of the outer loop. The syntax of the nested for loop in python is given below.

1. for iterating_var1 in sequence:

2. for iterating_var2 in sequence:

3. #block of statements

4. #Other statements

Example 1

1. n = int(input("Enter the number of rows you want to print?"))

2. i,j=0,0

3. for i in range(0,n):

4. print()

5. for j in range(0,i+1):

6. print("*",end="")

Output:

Enter the number of rows you want to print?5

*

**

Using else statement with for loop

Unlike other languages like C, C++, or Java, python allows us to use the else statement with the for loop which can

be executed only when all the iterations are exhausted. Here, we must notice that if the loop contains any of the

break statement then the else statement will not be executed.

Example 1

1. for i in range(0,5):

2. print(i)

3. else:print("for loop completely exhausted, since there is no break.");

In the above example, for loop is executed completely since there is no break statement in the loop. The control

comes out of the loop and hence the else block is executed.

Output:

0

1

2

3

4

for loop completely exhausted, since there is no break.

Example 2

1. for i in range(0,5):

2. print(i)

3. break;

4. else:print("for loop is exhausted");

5. print("The loop is broken due to break statement...came out of loop")

In the above example, the loop is broken due to break statement therefore the else statement will not be executed.

The statement present immediate next to else block will be executed.

Output:

0

The loop is broken due to break statement...came out of loop

Python while loop

The while loop is also known as a pre-tested loop. In general, a while loop allows a part of the code to be executed

as long as the given condition is true.

It can be viewed as a repeating if statement. The while loop is mostly used in the case where the number of

iterations is not known in advance.

The syntax is given below.

1. while expression:

2. statements

Here, the statements can be a single statement or the group of statements. The expression should be any valid

python expression resulting into true or false. The true is any non-zero value.

Example 1

1. i=1;

2. while i<=10:

3. print(i);

4. i=i+1;

Output:

1

2

3

4

5

6

7

8

9

10

Example 2

1. i=1

2. number=0

3. b=9

4. number = int(input("Enter the number?"))

5. while i<=10:

6. print("%d X %d = %d \n"%(number,i,number*i));

7. i = i+1;

Output:

Enter the number?10

10 X 1 = 10

10 X 2 = 20

10 X 3 = 30

10 X 4 = 40

10 X 5 = 50

10 X 6 = 60

10 X 7 = 70

10 X 8 = 80

10 X 9 = 90

10 X 10 = 100

Infinite while loop

If the condition given in the while loop never becomes false then the while loop will never terminate and result

into the infinite while loop.

Any non-zero value in the while loop indicates an always-true condition whereas 0 indicates the always-false

condition. This type of approach is useful if we want our program to run continuously in the loop without any

disturbance.

Example 1

1. while (1):

2. print("Hi! we are inside the infinite while loop");

Output:

Hi! we are inside the infinite while loop

(infinite times)

Example 2

1. var = 1

2. while var != 2:

3. i = int(input("Enter the number?"))

4. print ("Entered value is %d"%(i))

Output:

Enter the number?102

Entered value is 102

Enter the number?102

Entered value is 102

Enter the number?103

Entered value is 103

Enter the number?103

(infinite loop)

Using else with Python while loop

Python enables us to use the while loop with the while loop also. The else block is executed when the condition

given in the while statement becomes false. Like for loop, if the while loop is broken using break statement, then

the else block will not be executed and the statement present after else block will be executed.

Consider the following example.

1. i=1;

2. while i<=5:

3. print(i)

4. i=i+1;

5. else:print("The while loop exhausted");

Output:

1

2

3

4

5

The while loop exhausted

Example 2

1. i=1;

2. while i<=5:

3. print(i)

4. i=i+1;

5. if(i==3):

6. break;

7. else:print("The while loop exhausted");

Output:

1
2

Python break statement

The break is a keyword in python which is used to bring the program control out of the loop. The break statement

breaks the loops one by one, i.e., in the case of nested loops, it breaks the inner loop first and then proceeds to

outer loops. In other words, we can say that break is used to abort the current execution of the program and the

control goes to the next line after the loop.

The break is commonly used in the cases where we need to break the loop for a given condition.

The syntax of the break is given below.

1. #loop statements

2. break;

Example 1

1. list =[1,2,3,4]

2. count = 1;

3. for i in list:

4. if i == 4:

5. print("item matched")

6. count = count + 1;

7. break

8. print("found at",count,"location");

Output:

item matched

found at 2 location

Example 2

1. str = "python"

2. for i in str:

3. if i == 'o':

4. break

5. print(i);

Output:

p

y

t

h

Example 3: break statement with while loop

1. i = 0;

2. while 1:

3. print(i," ",end=""),

4. i=i+1;

5. if i == 10:

6. break;

7. print("came out of while loop");

Output:

0 1 2 3 4 5 6 7 8 9 came out of while loop

Example 3

1. n=2

2. while 1:

3. i=1;

4. while i<=10:

5. print("%d X %d = %d\n"%(n,i,n*i));

6. i = i+1;

7. choice = int(input("Do you want to continue printing the table, press 0 for no?"))

8. if choice == 0:

9. break;

10. n=n+1

Output:

2 X 1 = 2

2 X 2 = 4

2 X 3 = 6

2 X 4 = 8

2 X 5 = 10

2 X 6 = 12

2 X 7 = 14

2 X 8 = 16

2 X 9 = 18

2 X 10 = 20

Do you want to continue printing the table, press 0 for no?1

3 X 1 = 3

3 X 2 = 6

3 X 3 = 9

3 X 4 = 12

3 X 5 = 15

3 X 6 = 18

3 X 7 = 21

3 X 8 = 24

3 X 9 = 27

3 X 10 = 30

Do you want to continue printing the table, press 0 for no?0

Python continue Statement

The continue statement in python is used to bring the program control to the beginning of the loop. The continue

statement skips the remaining lines of code inside the loop and start with the next iteration. It is mainly used for a

particular condition inside the loop so that we can skip some specific code for a particular condition.

The syntax of Python continue statement is given below.

1. #loop statements

2. continue;

3. #the code to be skipped

Example 1

1. i = 0;

2. while i!=10:

3. print("%d"%i);

4. continue;

5. i=i+1;

Output:

infinite loop

Example 2

1. i=1; #initializing a local variable

2. #starting a loop from 1 to 10

3. for i in range(1,11):

4. if i==5:

5. continue;

6. print("%d"%i);

Output:

1

2

3

4

6

7

8

9

10

Pass Statement

The pass statement is a null operation since nothing happens when it is executed. It is used in the cases where a

statement is syntactically needed but we don't want to use any executable statement at its place.

For example, it can be used while overriding a parent class method in the subclass but don't want to give its

specific implementation in the subclass.

Pass is also used where the code will be written somewhere but not yet written in the program file.

The syntax of the pass statement is given below.

Example

1. list = [1,2,3,4,5]

2. flag = 0

3. for i in list:

4. print("Current element:",i,end=" ");

5. if i==3:

6. pass;

7. print("\nWe are inside pass block\n");

8. flag = 1;

9. if flag==1:

10. print("\nCame out of pass\n");

11. flag=0;

Output:

Current element: 1 Current element: 2 Current element: 3

We are inside pass block

Came out of pass

Current element: 4 Current element: 5

Python Pass

In Python, pass keyword is used to execute nothing; it means, when we don't want to execute code, the pass can be

used to execute empty. It is same as the name refers to. It just makes the control to pass by without executing any

code. If we want to bypass any code pass statement can be used.

Python Pass Syntax

1. pass

Python Pass Example

1. for i in [1,2,3,4,5]:

2. if i==3:

3. pass

4. print "Pass when value is",i

5. print i,

Output:

1. >>>

2. 1 2 Pass when value is 3

3. 3 4 5

