
1

CBSE: Class: XII Computer Science
UNIT-2 MySQL Advance

DATA TYPES IN MySQL

Difference between CHAR and VARCHAR
The CHAR data-type stores fixed length strings such that strings having length smaller than the

field size are padded on the right with spaces before being stored. The VARCHAR on the other

hand supports variable length strings and therefore stores strings smaller than the field size without

modification.

SQL Constraints/ Integrity Constraints
1-SQL Constraint is a condition or check applicable on a field or set of fields.

2- They can also be defined or modified after creating the tables.

3- When constraints are defined any data entering in the table is first checked to satisfy the condition

specified in particular constraint if it is, only then table data set can be updated. If data updation/

insertion is violating the defined constraints, database rejects the data (entire record is rejected).

4- When a constraint is applied to a single column, it is called a column level constraint but if a

constraint is applied on a combination of columns it is called a table constraint. Following constraints

can be defined on a table in SQL:

Class Data Type Description Format Example

Text CHAR(size) A fixed-length string between

1 and 255 characters in

length right-padded with

spaces to the specified length

when stored.

Values must be enclosed in

single quotes or double

quotes.

CHAR(size) ‘COMPU

TE R’

‘CBSE’

 VARCHAR(size

)

A variable-length string

between 1 and 255 characters

in length; for example
VARCHAR(20).

VARCHAR

(size)

‘SCIENC

E’

‘Informati

cs’

NUMER

IC

DECIMAL(p,s
)

It can represent number with

or without the fractional part.

The size argument has two

parts : precision and scale.

Precision

(p) indicates the number of

significant digits and scale

(s)maximum number of digits

to the right of the decimal

point.

Number(p,s) 58.63

 INT It is used for storing integer
values

INT 164

Date DATE It represents the date

including day, month and

year between
1000-01-01 and 9999-12-31

YYYY-MM-
DD

2014-08-

27

2

Constraints name Description

PRIMARY KEY Used to create a primary key

UNIQUE to create a unique key

NOT NULL to define that column will not accept null values.

FOREIGN KEY/
REFERENCES

to define referential integrity with another table.

DEFAULT to define the columns default value.

CHECK to define the custom rule.

Not Null and Default constraints can be applied only at column level rest all constraints can be applied on
both column level and table levels.

ACCESSING DATABASE IN MYSQL :
Through USE keyword we can start any database Syntax:

USE <database Name>;

Example: USE ADDRESS;

CREATING TABLE IN MYSQL
Through Create table command we can define any table.

CREATE TABLE <tablename>

(<columnname><datatype>[(<Size>)],);

CREATE TABLE ADDRESS(SNo integer, City char(25));

INSERTING DATA INTO TABLE

The rows are added to relations using INSERT command.

INSERT INTO <tablename>[<columnname>]

VALUES (<value>, <value> ...);

INSERT INTO ADDRESS (SNo, City)

VALUES (100,’JAIPUR’);

SELECT COMMAND:
The SELECT command is used to make queries on the database. A query is a command that is

given to produce certain specified information from the database table(s). The SELECT command

can be used to retrieve a subset of rows or columns from one or more tables. The syntax of Select

Command is:

SELECT <Column-list>

FROM <table_name>

[Where <condition>]

[GROUP BY <column_list>]

[Having <condition>]

[ORDER BY <column_list [ASC|DESC]>]

3

Example:

SELECT * FROM ADDRESS WHERE SNo=100;

Eliminating Redundant Data
■ DISTINCT keyword eliminates redundant data

SELECT DISTINCT City FROM ADDRESS;

Selecting from all the rows
SELECT * FROM ADDRESS;

Viewing structure of table:
DESCRIBE/DESC <tablename>;

DESCRIBE ADDRESS;

Using column aliases:
SELECT <column name> AS [columnalias][,...]

FROM <tablename>;

SELECT SNo, City AS “STUDENTCITY”

FROM ADDRESS;

■ Condition based on a range:
Keyword BETWEEN used for making range checks in queries.

SELECT SNo, CITY FROM ADDRESS WHERE SNo BETWEEN 10 AND 20;

■ Condition based on a list:

Keyword IN used for selecting values from a list of values.

SELECT rno, sname FROM student WHERE rno IN (10, 20, 60);

■ Condition based on a pattern matches:
Keyword LIKE used for making character comparison using strings percent(%)

matches any substring underscore(_) matches any character

SELECT SNo, City FROM ADDRESS WHERE City LIKE ‘%ri’;

■ Searching for NULL

The NULL value in a column is searched for in a table using IS NULL in the WHERE clause

(Relational Operators like =,<> etc cannot be used with NULL).

For example, to list details of all employees whose departments contain NULL (i.e., novalue), you

use the command:

SELECT empno, ename

FROM emp

Where Deptno IS NULL;

■ ORDER BY clause:
It is used to sort the results of a query.

SELECT <column name> [, <column name>, .]

FROM <table name>

[WHERE <condition>] [ORDER BY <column name>];

4

SELECT * FROM ADDRESS WHERE SNo>50 ORDER BY City;

■ Creating tables with SQL Constraint :

CREATE TABLE command is used to CREATE tables , the syntax is:

CREATE TABLE <Table_name>

(column_name 1 data_type1 [(size) column_constraints],

column_name 1 data_type1 [(size) column_constraints],

:

:

[<table_constraint> (column_names)]);

■ SQL Constraint:

A Constraint is a condition or check applicable on a field or set of fields.

■ NOT NULL/UNIQUE/DEFAULT/CHECK/PRIMARY KEY/FOREIGN KEY Constraint:

CREATE TABLE student (rollno integer NOT NULL);

CREATE TABLE student (rollno integer UNIQUE);

CREATE TABLE student (rollno integer NOT NULL, Sclass integer, Sname varchar(30),

Sclass DEFAULT 12);

CREATE TABLE student (rollno integer CHECK (rollno>0), Sclass integer, Sname

varchar(30));

CREATE TABLE student (rollno integer NOT NULL PRIMARY KEY, Sclass integer,

Sname varchar(30));

CREATE TABLE teacher (Tid integer NOT NULL, FOREIGN KEY (Studentid)

REFRENCES student (Sid));

■ Modifying data in tables:
Existing data in tables can be changed with UPDATE command.

The Update command is use to change the value in a table. The syntax of this command is:

UPDATE <table_name>

SET column_name1=new_value1 [,column_name2=new_value2,……]

WHERE <condition>;

UPDATE student SET Sclass=12 WHERE Sname=’Rohan’;

■ Deleting data from tables:

The DELETE command removes rows from a table. This removes the entire rows, not

individual field values. The syntax of this command is

DELETE FROM <table_name>

[WHERE <condition>];

e.g., to delete the tuples from EMP that have salary less than 2000, the following command is

used:

DELETE FROM emp WHERE sal<2000;

5

To delete all tuples from emp table:

DELETE FROM emp;

MySQL functions:
A function is a special type of predefined command set that performs some operation and

returns a single value.

Single-row functions return a single result row for every row of a queried table. They are

categorized into: Numeric functions, String functions, and Date and Time functions.

1) Numeric Functions

• POWER() : Returns the argument raised to the specified power. POW () works the same
way.

Example: (i) POW(2,4); Result:16 (ii) POW(2,-2); Result:0.25 (iii) POW(-2,3) Result: -8

• ROUND() : ROUND(X) Rounds the argument to the zero decimal place, Where as
ROUND(X,d) Rounds the argument to d decimal places.

Example :(i) ROUND(-1.23); Result: -1 (ii) ROUND(-1.58); Result: -2

(iii) ROUND(1.58); Result: 2 (iv)ROUND(3.798, 1);Result: 3.8

(v) ROUND(1.298, 0); Result: 1 (vi) ROUND(23.298, -1); Result: 20

• TRUNCATE() : Truncates the argument to specified number of decimal places.
Example: (i) TRUNCATE(7.29,1)Result: 7.2 (ii) TRUNCATE(27.29,-1) Result: 20

2) Character/String Functions

• LENGTH() : Returns the length of a string in bytes/no.of characters in string.
Example: LENGTH(‘INFORMATICS’); Result:11

• CHAR() : Returns the corresponding ASCII character for each integer passed.
Example : CHAR(65) ; Result : A

• CONCAT(): Returns concatenated string i.e. it adds strings.

Example : CONCAT(‘Informatics’,’ ‘,‘Practices’); Result : Informatics Practices

• INSTR(): Returns the index of the first occurrence of substring.
Example : INSTR(‘Informatics’,’ mat’);

Result : 6(since ‘m’ of ‘mat’ is at 6th place)

• LOWER()/ LCASE(): Returns the argument after converting it in lowercase.
Example: LOWER(‘INFORMATICS’); Result : informatics

• UPPER()/ UCASE(): Returns the argument after converting it in uppercase.
Example: UCASE(‘informatics’); Result :INFORMATICS

• LEFT() : Returns the given number of characters by extracting them from the left
side of the given string.

Example : LEFT(‘INFORMATICS PRACTICES’, 3); Result : INF

6

• MID()/SUBSTR() : Returns a substring starting from the specified position in a given
string.

Example: MID(‘INFORMATICS PRACTICES’,3,4); Result : FORM

• LTRIM() : Removes leading spaces.

Example : LTRIM(' INFORMATICS'); Result: 'INFORMATICS’

• RTRIM(): Removes trailing spaces.

Example : RTRIM('INFORMATICS '); Result: 'INFORMATICS’

• TRIM() : Removes leading and trailing spaces.

Example: TRIM(' INFORMATICS '); Result: 'INFORMATICS’

3) Date/Time Functions
 CURDATE() : Returns the current date

Example: CURDATE(); Result:'2014-07-21'

 NOW(): Returns the current date and time

Example: NOW(); Result: '2014-07-21 13:58:11'

 SYSDATE() : Return the time at which the function executes

Example: SYSDATE(); Result:'2014-07-21 13:59:23’

 DATE(): Extracts the date part of a date or date time expression

Example: DATE('2003-12-31 01:02:03'); Result::'2003-12-31'

 MONTH() :Returns the month from the date passed

Example: MONTH('2010-07-21'); Result: 7

 YEAR(): Returns the year

Example: YEAR('2010-07-21'); Result: 2010

 DAYNAME(): Returns the name of the weekday

Example: DAYNAME('2010-07-21'); Result: WEDNESDAY

 DAYOFMONTH(): Returns the day of the month (0-31)

Example: DAYOFMONTH('2010-07-21'); Result: 21

 DAYOFWEEK(): Returns the weekday index of the argument

Example: DAYOFWEEK('2010-07-21'); Result: 4 (Sunday is counted as 1)

 DAYOFYEAR(): Return the day of the year(1 -366)

Example: DAYOFYEAR('2010-07-21'); Result: 202

 Aggregate or Group functions: MySQL provides Aggregate or Group functions which

work on a number of values of a column/expression and return a single value as the result.

7

Some of the most frequently used Aggregate functions in MySQL are:

S.N

o

Name of the

Function

Purpose

1 MAX() Returns the MAXIMUM of the values under the

specified column/expression.

2 MIN() Returns the MINIMUM of the values under the

specified column/expression.

3 AVG() Returns the AVERAGE of the values under the

specified column/expression.

4 SUM() Returns the SUM of the values under the specified

column/expression.

5 COUNT() Returns the COUNT of the number of values under

the specified column/expression.

■ The GROUP BY clause groups the rows in the result by columns that have the same values.

Grouping can be done by column name, or with aggregate functions in which case the

aggregate produces a value for each group.

■ The HAVING clause place conditions on groups in contrast to WHERE clause that place

conditions on individual rows. While WHERE condition cannot include aggregate functions,

HAVING conditions can do so.

■ ALTER TABLE COMMAND:-

The ALTER Table command is used to change the definition (structure) of existing table. Usually , it can:

o Add columns to a table

o Delete columns

o Modify a column

The syntax of command is:

For Add or modify column:

ALTER TABLE <Table_name> ADD/MODIFY <Column_defnition>;

For Delete column

ALTER TABLE <Table_name> DROP COLUMN <Column_name>;

Example :

 To add a new column address in EMP table command will be :

ALTER TABLE EMP ADD (address char (30));

To modify the size of sal column in EMP table, command will be: ALTER

TABLE EMP MODIFY (sal number(9,2));

To delete column Address from Table EMP the command will be: ALTER

TABLE EMP DROP COLUMN address;

8

• Cartesian Product (or Cross Join): Cartesian product of two tables is a table obtained by

pairing each row of one table with each row of the other. A Cartesian product of two tables

contains all the columns of both the tables.

• Equi-Join: An equi join of two tables is obtained by putting an equality condition on the

Cartesian product of two tables. This equality condition is put on the common column of the

tables. This common column is, generally, primary key of one table and foreign key of the other.

• Foreign Key: It is a column of a table which is the primary key of another table in the same

database. It is used to enforce referential integrity of the data.

• Referential Integrity: The property of a relational database which ensures that no entry in a

foreign key column of a table can be made unless it matches a primary key value in the

corresponding column of the related table.
• Union: Union is an operation of combining the output of two SELECT statements.

Display data from multiple Tables :-
It does no good to put records in a database unless you retrieve them eventually and do something

with them.

Creating Joins on tables :-
If a SELECT statement names multiple tables in the FROM clause with the names separated by

commas, MySQL performs a full join. For example, if you join t1 and t2 as follows, each row in

t1 is combined with each row in t2:

mysql> SELECT t1.*, t2.* FROM t1, t2;

+ + + + +

| i1 | c1 | i2 | c2 |

+ + + + +

| 1 | a | 2 | c |

| 2 | b | 2 | c |

| 3 | c | 2 | c |

| 1 | a | 3 | b |

| 2 | b | 3 | b |

| 3 | c | 3 | b |

| 1 | a | 4 | a |

| 2 | b | 4 | a |

| 3 | c | 4 | a |

+ + + + +

A full join is also called a cross join because each row of each table is crossed with each row in

every other table to produce all possible combinations. This is also known as the cartesian

product. Joining tables this way has the potential to produce a very large number of rows.

If you add a WHERE clause causing tables to be matched on the values of certain columns, the

join becomes what is known as an equi-join because you're selecting only rows with equal values

in the specified columns:

mysql> SELECT t1.*, t2.* FROM t1, t2 WHERE t1.i1 = t2.i2;

+ + + + +

| i1 | c1 | i2 | c2 |

+ + + + +

| 2 | b | 2 | c |

| 3 | c | 3 | b |

9

+ + + + +

The JOIN and CROSS JOIN join types are equivalent to the ',' (comma) join operator.

Solved Questions :-

Q1. Consider the following tables ACTIVITY and COACH. Write SQL commands for the

statements (i) to (iv) and give outputs for SQL queries (v) to (viii).

Table: ACTIVITY

ACode ActivityName ParticipantsNum PrizeMoney ScheduleDate

1001 Relay 100x4 16 10000 23-Jan-2004

1002 High jump 10 12000 12-Dec-2003

1003 Shot Put 12 8000 14-Feb-2004

1005 Long Jump 12 9000 01-Jan-2004

1008 Discuss Throw 10 15000 19-Mar-2004

Table: COACH

PCode Name ACode

1 Ahmad Hussain 1001

2 Ravinder 1008

3 Janila 1001

4 Naaz 1003

(i) To display the name of all activities with their Acodes in descending order.

(ii) To display sum of PrizeMoney for each of the Number of participants groupings (as

shown in column ParticipantsNum 10,12,16).

(iii) To display the coach’s name and ACodes in ascending order of ACode from the table

COACH.

(iv) To display the content of the GAMES table whose ScheduleDate earlier than 01/01/2004

in ascending order of ParticipantNum.

(v) SELECT COUNT(DISTINCT ParticipantsNum) FROM ACTIVITY;

(vi)SELECT MAX(ScheduleDate),MIN(ScheduleDate) FROM ACTIVITY;

(vii) SELECT SUM(PrizeMoney) FROM ACTIVITY;
(viii) SELECT DISTINCT ParticipantNum FROM COACH;

Ans :

I. SELECT ActivityName, ACode FROM ACTIVITY ORDER BY

Acode DESC;

II. SELECT SUM(PrizeMoney),ParticipantsNum FROM ACTIVITY GROUP BY

ParticipantsNum;

III. SELECT Name, ACode FROM COACH ORDER BY ACode;

IV. SELECT * FROM ACTIVITY WHERE ScheduleDate<’01-Jan-2004’ ORDER BY ParticipantsNum;

(v) 3

(vi) 19-Mar-2004 12-Dec-2003

(vii) 54000

(viii) 16

10

12

Q2. Consider the following tables GAMES and PLAYER. Write SQL commands for the

statements (i) to (iv) and give outputs for SQL queries (v) to (viii).

Table: GAMES

GCode GameName Number PrizeMoney ScheduleDate

101 Carom Board 2 5000 23-Jan-2004

10

102 Badminton 2 12000 12-Dec-2003

103 Table Tennis 4 8000 14-Feb-2004

105 Chess 2 9000 01-Jan-2004

108 Lawn Tennis 4 25000 19-Mar-2004

Table: PLAYER

PCode Name Gcode

1 Nabi Ahmad 101

2 Ravi Sahai 108

3 Jatin 101

4 Nazneen 103

(i) To display the name of all Games with their Gcodes.

(ii) To display details of those games which are having PrizeMoney more than 7000.

(iii)To display the content of the GAMES table in ascending order of ScheduleDate.

(iv) To display sum of PrizeMoney for each of the Number of participation groupings (as

shown in column Number 2 or 4).

(v) SELECT COUNT(DISTINCT Number) FROM GAMES;

(vi)SELECT MAX(ScheduleDate),MIN(ScheduleDate) FROM GAMES;

(vii) SELECT SUM(PrizeMoney) FROM GAMES;
(viii) SELECT DISTINCT Gcode FROM PLAYER;

Ans : (i) SELECT GameName,Gcode FROM GAMES;

(ii) SELECT * FROM GAMES WHERE PrizeMoney>7000;

(iii) SELECT * FROM GAMES ORDER BY ScheduleDate;

(iv) SELECT SUM(PrizeMoney),Number FROM GAMES GROUP BY Number;

(v) 2

(vi) 19-Mar-2004 12-Dec-2003

(vii) 59000

(viii) 101

103

108

11

Q3. Consider the following tables HOSPITAL. Give outputs for SQL queries (i) to (iv) and

write SQL commands for the statements (v) to (viii).

No Name Age Department Dateofadmin Charge Sex

1 Arpit 62 Surgery 21/01/06 300 M

2 Zayana 18 ENT 12/12/05 250 F

3 Kareem 68 Orthopedic 19/02/06 450 M

4 Abhilash 26 Surgery 24/11/06 300 M

5 Dhanya 24 ENT 20/10/06 350 F

6 Siju 23 Cardiology 10/10/06 800 M

7 Ankita 16 ENT 13/04/06 100 F

8 Divya 20 Cardiology 10/11/06 500 F

9 Nidhin 25 Orthopedic 12/05/06 700 M

10 Hari 28 Surgery 19/03/06 450 M

(i) Select SUM(Charge) from HOSPITAL where Sex=’F’;

(ii) Select COUNT(DISTINCT Department) from HOSPITAL;

(iii) Select SUM(Charge) from HOSPITAL group by Department;

(iv) Select Name from HOSPITAL where Sex=’F’ AND Age > 20;

(v) To show all information about the patients whose names are having four characters only.

(vi) To reduce Rs 200 from the charge of female patients who are in Cardiology department.

(vii) To insert a new row in the above table with the following data :

11, ‘Rakesh’, 45, ‘ENT’, {08/08/08}, 1200, ‘M’

(viii) To remove the rows from the above table where age of the patient > 60.

Ans : (i) 1200

(ii) 4

(iii) 1050

 700

1150

1300

(iv) Dhanya

(v) SELECT * FROM HOSPITAL WHERE NAME LIKE “ _____ ”;

(vi) UPDATEHOSPITAL SET CHARGE = CHARGE – 200 WHERE (DEPARTMENT =

‘CARDIOLOGY’ AND SEX = ‘F’);

(vii) INSERT INTO HOSPITAL VALUES(11,‘Rakesh’,45,‘ENT’,{08/08/08}, 1200, ‘M’);

(viii) DELETE FROM HOSPITAL WHERE AGE > 60;

Q4. Consider the following tables BOOKS. Write SQL commands for the statements (i) to (iv)

and give outputs for SQL queries (v) to (viii).

Table : BOOKS

B_Id Book_Name Author_Name Publisher Price Type Quantity

C01 Fast Cook Lata Kapoor EPB 355 Cookery 5

F01 The Tears William
Hopkins

First 650 Fiction 20

12

T01 My C++ Brain &
Brooke

FPB 350 Text 10

T02 C++ Brain A.W.Rossaine TDH 350 Text 15

F02 Thuderbolts Anna Roberts First 750 Fiction 50

i). To list the names from books of Text type.

ii). To display the names and price from books in ascending order of their price.

iii). To increase the price of all books of EPB publishers by 50.

iv). To display the Book_Name, Quantity and Price for all C++ books.

v). Select max(price) from books;

vi). Select count(DISTINCT Publishers) from books where Price >=400;

vii).Select Book_Name, Author_Name from books where Publishers = ‘First’;

viii).Select min(Price) from books where type = ‘Text’;

Ans : (i) SELECT Book_Name FROM BOOKS WHERE Type = ‘Text’;

(ii) SELECT Book_Name, Price FROM BOOKS ORDER BY Price;

(iii) UPDATE BOOKS SET Price = Price + 50 WHERE Publisher = ‘EPB’;

(iv) SELECT Book_Name, Quantity, Price FROM BOOKS WHERE Book_Name LIKE

‘%C++%’;

(v) 750

(vi) 2

(vii) The Tears William Hopkins

Thuderbolts Anna Roberts

(viii) 350

Q5. Consider the tables ITEMS & COMPANY. Write SQL commands for the statements (i) to

(iv) and give the outputs for SQL queries (v) to (viii).

Table : ITEMS
ID PNAME PRICE MDATE QTY

T001 Soap 12.00 11/03/2007 200

T002 Paste 39.50 23/12/2006 55

T003 Deodorant 125.00 12/06/2007 46

T004 Hair Oil 28.75 25/09/2007 325

T005 Cold Cream 66.00 09/10/2007 144

T006 Tooth Brush 25.00 17/02/2006 455

Table : COMPANY

ID COMP City

T001 HLL Mumbai

T008 Colgate Delhi

T003 HLL Mumbai

T004 Paras Haryana

T009 Ponds Noida

T006 Wipro Ahmedabad

i). To display PNAME, PRICE * QTY only for the city Mumbai.

ii). To display product name, company name & price for those items which IDs are equal to the

IDs of company.

iii). To delete the items produced before 2007.

iv). To increase the quantity by 20 for soap and paste.

v). SELECT COUNT(*) FROM ITEMS WHERE ITEMS.ID=COMPANY.ID;

vi). SELECT PNAME FROM ITEMS WHERE PRICE=SELECT MIN(PRICE) FROM ITEMS;

vii). SELECT COUNT(*) FROM COMPANY WHERE COMP LIKE “P _____ ”;

viii). SELECT PNAME FROM ITEMS WHERE QTY<100;

Ans :
(i) SELECT PNAME, QTY*PRICE FROM ITEMS

WHERE ITEMS.ID = COMPANY.ID AND COMPANY.City=’Mumbai’;

(ii) SELECT PNAME, COMP, PRICE FROM ITEMS, COMPANY

WHERE ITEMS.ID = COMPANY.ID;

(iii) DELETE FROM ITEMS WHERE MDATE < {01/01/2007};

(iv) UPDATE ITEMS SET QTY = QTY + 20

WHERE PNAME = ‘Soap’ OR PNAME = ‘Paste’;

(v) 4

(vi) Soap

(vii) 2

(viii) Paste

Deodorant
