

CBSE: Class: XII Computer Science

UNIT-1 CHAPTER-1: Python String

Python String

Till now, we have discussed numbers as the standard data types in python. In this section of the tutorial, we will

discuss the most popular data type in python i.e., string.

In python, strings can be created by enclosing the character or the sequence of characters in the quotes. Python

allows us to use single quotes, double quotes, or triple quotes to create the string.

Consider the following example in python to create a string.

1. str = "Hi Python !"

Here, if we check the type of the variable str using a python script

1. print(type(str)), then it will print string (str).

In python, strings are treated as the sequence of strings which means that python doesn't support the character data

type instead a single character written as 'p' is treated as the string of length 1.

Strings indexing and splitting

Like other languages, the indexing of the python strings starts from 0. For example, The string "HELLO" is

indexed as given in the below figure.

As shown in python, the slice operator [] is used to access the individual characters of the string. However, we can

use the : (colon) operator in python to access the substring. Consider the following example.

Here, we must notice that the upper range given in the slice operator is always exclusive i.e., if str = 'python' is

given, then str[1:3] will always include str[1] = 'p', str[2] = 'y', str[3] = 't' and nothing else.

Reassigning strings
Updating the content of the strings is as easy as assigning it to a new string. The string object doesn't support item

assignment i.e., A string can only be replaced with a new string since its content can not be partially replaced.

Strings are immutable in python.

Consider the following example.

Example 1

1. str = "HELLO"

2. str[0] = "h"

3. print(str)

Output:
Traceback (most recent call last):

 File "12.py", line 2, in <module>

 str[0] = "h";

TypeError: 'str' object does not support item assignment

However, in example 1, the string str can be completely assigned to a new content as specified in the following

example.

Example 2

1. str = "HELLO"

2. print(str)

3. str = "hello"

4. print(str)

Output:

HELLO

hello

String Operators

Operator Description

+ It is known as concatenation operator used to join the strings given either side of the operator.

* It is known as repetition operator. It concatenates the multiple copies of the same string.

[] It is known as slice operator. It is used to access the sub-strings of a particular string.

[:] It is known as range slice operator. It is used to access the characters from the specified range.

in It is known as membership operator. It returns if a particular sub-string is present in the

specified string.

not in It is also a membership operator and does the exact reverse of in. It returns true if a particular

substring is not present in the specified string.

r/R It is used to specify the raw string. Raw strings are used in the cases where we need to print the

actual meaning of escape characters such as "C://python". To define any string as a raw string,

the character r or R is followed by the string.

% It is used to perform string formatting. It makes use of the format specifiers used in C

programming like %d or %f to map their values in python. We will discuss how formatting is

done in python.

Example

Consider the following example to understand the real use of Python operators.

1. str = "Hello"

2. str1 = " world"

3. print(str*3) # prints HelloHelloHello

4. print(str+str1)# prints Hello world

5. print(str[4]) # prints o

6. print(str[2:4]); # prints ll

7. print('w' in str) # prints false as w is not present in str

8. print('wo' not in str1) # prints false as wo is present in str1.

9. print(r'C://python37') # prints C://python37 as it is written

10. print("The string str : %s"%(str)) # prints The string str : Hello

Output:

HelloHelloHello

Hello world

o

ll

False

False

C://python37

The string str : Hello

Python Formatting operator

Python allows us to use the format specifiers used in C's printf statement. The format specifiers in python are

treated in the same way as they are treated in C. However, Python provides an additional operator % which is used

as an interface between the format specifiers and their values. In other words, we can say that it binds the format

specifiers to the values.

Consider the following example.

1. Integer = 10;

2. Float = 1.290

3. String = "Ayush"

4. print("Hi I am Integer ... My value is %d\nHi I am float ... My value is %f\nHi I am string ... My value is %s"%(Integer,Floa

t,String));

Output:

Hi I am Integer ... My value is 10

Hi I am float ... My value is 1.290000

Hi I am string ... My value is Ayush

Built-in String functions

Python provides various in-built functions that are used for string handling. Many String fun

Functions Description

capitalize() It capitalizes the first character of the String. This function is

deprecated in python3

casefold() It returns a version of s suitable for case-less comparisons.

center(width ,fillchar) It returns a space padded string with the original string centred

with equal number of left and right spaces.

count(string,begin,end) It counts the number of occurrences of a substring in a String

between begin and end index.

decode(encoding = 'UTF8', errors =
'strict')

Decodes the string using codec registered for encoding.

encode() Encode S using the codec registered for encoding. Default

encoding is 'utf-8'.

endswith(suffix
,begin=0,end=len(string))

It returns a Boolean value if the string terminates with given

suffix between begin and end.

expandtabs(tabsize = 8) It defines tabs in string to multiple spaces. The default space

value is 8.

find(substring ,beginIndex, endIndex) It returns the index value of the string where substring is found

between begin index and end index.

format(value) It returns a formatted version of S, using the passed value.

index(subsring, beginIndex, endIndex) It throws an exception if string is not found. It works same as

find() method.

isalnum() It returns true if the characters in the string are alphanumeric i.e.,

alphabets or numbers and there is at least 1 character. Otherwise, it

returns false.

isalpha() It returns true if all the characters are alphabets and there is at

least one character, otherwise False.

isdecimal() It returns true if all the characters of the string are decimals.

isdigit() It returns true if all the characters are digits and there is at least

one character, otherwise False.

isidentifier() It returns true if the string is the valid identifier.

islower() It returns true if the characters of a string are in lower case,

otherwise false.

isnumeric() It returns true if the string contains only numeric characters.

isprintable() It returns true if all the characters of s are printable or s is empty,

false otherwise.

isupper() It returns false if characters of a string are in Upper case,

otherwise False.

isspace() It returns true if the characters of a string are white-space,

otherwise false.

istitle() It returns true if the string is titled properly and false otherwise. A

title string is the one in which the first character is upper-case whereas

the other characters are lower-case.

isupper() It returns true if all the characters of the string(if exists) is true

otherwise it returns false.

join(seq) It merges the strings representation of the given sequence.

len(string) It returns the length of a string.

ljust(width[,fillchar]) It returns the space padded strings with the original string left

justified to the given width.

lower() It converts all the characters of a string to Lower case.

lstrip() It removes all leading whitespaces of a string and can also be

used to remove particular character from leading.

partition() It searches for the separator sep in S, and returns the part before

it, the separator itself, and the part after it. If the separator is not found,

return S and two empty strings.

maketrans() It returns a translation table to be used in translate function.

replace(old,new[,count]) It replaces the old sequence of characters with the new sequence.

The max characters are replaced if max is given.

rfind(str,beg=0,end=len(str)) It is similar to find but it traverses the string in backward

direction.

rindex(str,beg=0,end=len(str)) It is same as index but it traverses the string in backward

direction.

rjust(width,[,fillchar]) Returns a space padded string having original string right justified

to the number of characters specified.

rstrip() It removes all trailing whitespace of a string and can also be used

to remove particular character from trailing.

rsplit(sep=None, maxsplit = -1) It is same as split() but it processes the string from the backward

direction. It returns the list of words in the string. If Separator is not

specified then the string splits according to the white-space.

split(str,num=string.count(str)) Splits the string according to the delimiter str. The string splits

according to the space if the delimiter is not provided. It returns the list

of substring concatenated with the delimiter.

splitlines(num=string.count('\n')) It returns the list of strings at each line with newline removed.

startswith(str,beg=0,end=len(str)) It returns a Boolean value if the string starts with given str

between begin and end.

strip([chars]) It is used to perform lstrip() and rstrip() on the string.

swapcase() It inverts case of all characters in a string.

title() It is used to convert the string into the title-case i.e., The

string meEruT will be converted to Meerut.

translate(table,deletechars = '') It translates the string according to the translation table passed in

the function .

upper() It converts all the characters of a string to Upper Case.

zfill(width) Returns original string leftpadded with zeros to a total of width

characters; intended for numbers, zfill() retains any sign given (less

one zero).

rpartition()

